Connective tissue growth factor and regulation of the mesangial cell cycle: role in cellular hypertrophy.
نویسندگان
چکیده
Connective tissue growth factor (CTGF) is now considered to be one of the important driver molecules for the pathogenesis of diabetic nephropathy (DN) and possibly many other fibrotic disorders. However, the molecular mechanisms by which CTGF functions remain to be established. In an attempt to define these mechanisms, this study was designed to investigate whether CTGF has any effect on the cell cycle of human mesangial cells (HMC), which are known to undergo hypertrophy in DN. This report provides the first evidence that CTGF is a hypertrophic factor for HMC. CTGF stimulates HMC to actively enter the G(1) phase from G(0), but they do not then progress further through the cell cycle. The molecular mechanisms underlying this G(1) phase arrest appear to be due to the induction of the cyclin-dependent kinase inhibitors (CDKI) p15(INK4), p21(Cip1), and p27(Kip1), which are known to bind and inactivate cyclinD/CDK4/6 and the cyclin E/CDK2 kinase complexes. This could account for the maintenance of pRb protein in a non- or very low-phosphorylated state, preventing cell cycle progression. Using CTGF antisense oligonucleotides, the results also indicate that the previously identified transforming growth factor-beta (TGF-beta)-induced hypertrophy in mesangial cells is CTGF-dependent. Mesangial cell hypertrophy is one of the earliest abnormalities of diabetic nephropathy; therefore, therapeutic strategies targeting CTGF may be beneficial in controlling DN.
منابع مشابه
Connective tissue growth factor antagonizes transforming growth factor-β1/Smad signalling in renal mesangial cells.
The critical involvement of TGF-β1 (transforming growth factor-β1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-β1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-β1 and its physiological significan...
متن کاملRegulation and consequences of differential gene expression in diabetic kidney disease.
DN (diabetic nephropathy) is the leading cause of end-stage renal disease worldwide and develops in 25-40% of patients with Type 1 or Type 2 diabetes mellitus. Elevated blood glucose over long periods together with glomerular hypertension leads to progressive glomerulosclerosis and tubulointerstitial fibrosis in susceptible individuals. Central to the pathology of DN are cytokines and growth fa...
متن کاملPathogenic Role of TGF- β in Diabetic Nephropathy
About one-third of diabetic patients develop diabetic kidney disease. In renal cells, transforming growth factorβ (TGF-β) is a key regulator of extracellular matrix protein synthesis and is secreted as latent complexes. Chronic hyperglycemia in diabetic patients seems to stimulate the glomerular mesangial cells to secrete TGFβ, which is stored in the mesangial matrix and then localized to the p...
متن کاملOryeongsan suppressed high glucose-induced mesangial fibrosis
BACKGROUND The pathological change of kidney in diabetic nephropathy is represented hypertrophy, inflammation, and renal fibrosis. Oryeongsan, traditional oriental herbal formula, is widely used for the treatment of nephrosis, dropsy, and uremia. This study was examined whether Oryeongsan attenuate high-glucose (HG)-promoted rat mesangial cell fibrosis and matrix accumulation, major features of...
متن کاملInvestigating the CTGF mRNA Expression Level in Patients with Colorectal Cancer
Background: The Connective Tissue Growth Factor (CTGF) gene encoding an extracellular matrix (ECM)-associated protein and as a member of the CCN family of proteins plays a major role in fibrosis, inflammation and connective tissue remodeling in a variety of diseases including cancer. The CCN proteins are multifunctional and are involved in cell proliferation, adhesion and cell development durin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2002